Graph-based Semi-Supervised Regression and Its Extensions

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Graph-based Semi-Supervised Regression and Its Extensions

In this paper we present a graph-based semisupervised method for solving regression problem. In our method, we first build an adjacent graph on all labeled and unlabeled data, and then incorporate the graph prior with the standard Gaussian process prior to infer the training model and prediction distribution for semi-supervised Gaussian process regression. Additionally, to further boost the lea...

متن کامل

Graph-Based Semi-Supervised Learning

While labeled data is expensive to prepare, ever increasing amounts of unlabeled data is becoming widely available. In order to adapt to this phenomenon, several semi-supervised learning (SSL) algorithms, which learn from labeled as well as unlabeled data, have been developed. In a separate line of work, researchers have started to realize that graphs provide a natural way to represent data in ...

متن کامل

Graph Laplacian for Semi-supervised Feature Selection in Regression Problems

Feature selection is fundamental in many data mining or machine learning applications. Most of the algorithms proposed for this task make the assumption that the data are either supervised or unsupervised, while in practice supervised and unsupervised samples are often simultaneously available. Semi-supervised feature selection is thus needed, and has been studied quite intensively these past f...

متن کامل

Semi-Supervised Classification Based on Mixture Graph

Graph-based semi-supervised classification heavily depends on a well-structured graph. In this paper, we investigate a mixture graph and propose a method called semi-supervised classification based on mixture graph (SSCMG). SSCMG first constructs multiple k nearest neighborhood (kNN) graphs in different random subspaces of the samples. Then, it combines these graphs into a mixture graph and inc...

متن کامل

Parallel Graph-Based Semi-Supervised Learning

Semi-supervised learning (SSL) is the process of training decision functions using small amounts of labeled and relatively large amounts of unlabeled data. In many applications, annotating training data is time-consuming and error prone. Speech recognition is the typical example, which requires large amounts of meticulously annotated speech data (Evermann et al., 2005) to produce an accurate sy...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: International Journal of Advanced Computer Science and Applications

سال: 2015

ISSN: 2156-5570,2158-107X

DOI: 10.14569/ijacsa.2015.060636